giá trị của a sao cho pt log2(x+a)=3 có nghiệm là x=2 là
pt\(\left(7+4\sqrt{3}\right)^x+\left(2+\sqrt{3^{ }}\right)^x=6\)có nghiệm là
4^x-5.2^x+4=0 là
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Cho phương trình log2(10x) - 2mlog10xx - log(10x2)=0 . Gọi S là tập chứa tất cả các giá trị nguyên của m thuộc [-10;10] để phương trình đã cho có đúng 3 nghiệm phân biệt . Số phần tử của tập S là
log2 x+log5 (x+8) =2 giải pt
Cho hàm số f(x) =log0,5(6x-x2). tập nghiệm của bất phương trình .
1. log cơ số 2 của (2^x-1/|x|) = 1+x-2^X
2. 4^(X^2+X+1) - 2^(X+2)+1<= 0
3. 4^((x-1)/(x+1)) <= 1/4 nhân 32^(x/x-1)
4. log cơ số 3 của (3^x-1) / (x-1) >= 1
Cho x dương khác 1. Chứng minh rằng
1/log2(x) + 1/log2^2(x) + . . . + 1/log2^2019(x) = 2039190/log2(x)
Cho phương trình \(\left(2\log^2_3x-\log_3x-1\right)\sqrt{5^x-m}=0\)(với m là tham số thực). Số giá trị nguyên dương của m để phương trình đã cho có hai nghiệm phân biệt là:
A. 125 B. Vô số C. 124 D. 123
Giải pt:
a/ log3(\(\dfrac{x^2+x+3}{2x^2+4x+5}\))=x2+3x+2
b/ 2x+1-4x=x+1