Cho hàm số \(y=f\left(x\right)\) liên tục và nhận giá trị không âm trên \(\left[1;2\right]\)và thỏa mãn \(f\left(x\right)=f\left(1-x\right),\forall x\in\left[-1;2\right].\) đặt \(S_1=\int_{-1}^2xf\left(x\right)dx\), \(S_2\) là diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y=f\left(x\right)\), trục \(Ox\) và hai đường thẳng \(x=-1,x=2\). Khẳng định nào dưới đây là đúng?
A. \(S_1=2S_2\) B. \(S_1=3S_2\) C. \(2S_1=S_2\) D. \(3S_1=S_2\)
Giải thích chi tiết cho mình với ạ, mình cảm ơn nhiều ♥
Hàm số nào bên dưới không là nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2-1}{x^2}\)
A. F(x)=\(\dfrac{x^2-x+1}{x}\)
B. F(x)=\(\dfrac{x^2+1}{x}\)
C. F(x)=\(\dfrac{x^2+2x+1}{x}\)
D. F(x)\(=\dfrac{x^2-1}{x}\)
Cho hàm số y=f(x) liên tục trên [0;+\(\infty\)] và \(\int_0^{x^2}f\left(t\right)dt=x.sin\pi x\). Tính f(4)
Tìm mọi nguyên hàm của hàm số \(f\left(x\right)=3e^{2x+1}+\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\)
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}2\sin^2x+1,x< 0\\2^x;x\ge0\end{matrix}\right.\). Giả sử \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\) trên \(R\) và thỏa mãn điều kiện \(F\left(1\right)=\dfrac{2}{ln2}\). Tính \(F\left(-\pi\right)\)
A. \(F\left(-\pi\right)=-2\pi+\dfrac{1}{ln2}\) B. \(F\left(-\pi\right)=-2\pi-\dfrac{1}{ln2}\)
C. \(F\left(-\pi\right)=-\pi-\dfrac{1}{ln2}\) D. \(F\left(-\pi\right)=-2\pi\)
Mình cần bài giải ạ, mình cảm ơn nhiều ♥
3. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+1}{x+3m}\) nghịch biến trên khoảng(6;+\(\infty\) )?
4. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (-\(\infty\);-6)?
Tìm nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2+2x}{x+1}\).
Số điểm cực trị của hàm số \(f\left(x\right)=\int\limits^{x^3+1}_1\left(\sqrt{t^2+12}-4\right)^{2017}dx\) là:
A. 1
B. 3
C. 2
D. 0