Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Quỳnh Hương

Tìm mọi nguyên hàm của hàm số \(f\left(x\right)=3e^{2x+1}+\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\)

Huỳnh Thị Đông Thi
20 tháng 3 2016 lúc 21:24

Đặt \(f_1\left(x\right)=3e^{2x+1};f_2\left(x\right)=\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\) . Khi đó \(f\left(x\right)=f_1\left(x\right)+f_2\left(x\right)\)

- Tìm một nguyên hàm của \(f_1\left(x\right)=3e^{2x+1}\) vì nguyên hàm của hàm số \(e^x\) là hàm số \(e^x\) nên theo quy tắc : "Nếu F(x) là một nguyên hàm của hàm số \(f\left(x\right)\) thì \(F\left(y\left(t\right)\right)\) là một nguyên hàm của hàm số \(f\left(y\left(t\right)\right).y't\)                                           trong đó ta giả thiết rằng các hàm số \(f\left(y\left(t\right)\right).y't\)                                                        và \(F\left(y\left(t\right)\right)\) đều được xác định. Đặc biệt là nếu \(y\left(t\right)=at+b,a\ne0\) vafneeus F(x) là một nguyên hàm đối với hàm \(f\left(x\right)\) thì \(\frac{1}{a}F\left(at+b\right)\) là một nguyên hàm đối với hàm số \(f\left(at+b\right)\)" (a)

Nguyên hàm của hàm số \(e^{2x+1}\) là \(F_1\left(x\right)=\frac{1}{2}e^{2x+1}\)

Theo quy tắc "Nếu \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\) thì \(kF\left(x\right)\) là một nguyên hàm của hàm số \(kf\left(x\right)\)" (b) 

một nguyên hàm của \(3e^{2x+1}\) là hàm số \(3.\frac{1}{2}e^{2x+1}=\frac{3}{2}e^{2x+1}\)

Tìm một nguyên hàm của \(f_2\left(x\right)=\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\). Vì hàm số \(\tan x\) là một nguyên hàm của \(\frac{1}{\cos^2x}\) nên theo quy tắc (a) ta có \(\frac{4}{\Pi}\tan\frac{\Pi x}{4}\) là nguyên hàm của \(\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\)

Bây giờ áp dụng  quy tắc "Nếu F(x) là một nguyên hàm của hàm f(x) và G(x) là một nguyên hàm của hàm số g(x) thì hàm số F(x) + G (x) là môt nguyên hàm của hàm số f(x)+g(x)" (c)

ta thu được \(\frac{3}{2}e^{2x+1}+\frac{4}{\Pi}\) là nguyên hàm của hàm số \(f\left(x\right)\)

Mọi nguyên hàm của \(f\left(x\right)\) được biểu diễn bởi công thức :

\(F\left(x\right)=\frac{3}{2}e^{2x+1}+\frac{4}{\Pi}\tan\left(\frac{\Pi x}{4}\right)+C\)


Các câu hỏi tương tự
AllesKlar
Xem chi tiết
Luân Trần
Xem chi tiết
haudreywilliam
Xem chi tiết
Võ Thị Hoài Linh
Xem chi tiết
...:v
Xem chi tiết
Mai Xuân Bình
Xem chi tiết
Tô Cường
Xem chi tiết
Hoang Khoi
Xem chi tiết
Phạm Lợi
Xem chi tiết