\(\Leftrightarrow sin^6x-sin^{10}x+cos^6x-cos^{10}x=0\)
\(\Leftrightarrow sin^6x\left(1-sin^4x\right)+cos^6x\left(1-cos^4x\right)=0\)
Do \(\left\{{}\begin{matrix}1-sin^4x\ge0\\1-cos^4x\ge0\end{matrix}\right.\) \(\forall x\) nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin^6x\left(1-sin^4x\right)=0\\cos^6x\left(1-cos^4x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=0\end{matrix}\right.\) \(\Leftrightarrow sin2x=0\)
\(\Rightarrow x=\frac{\pi}{2}+\frac{k\pi}{2}\)