\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+........+\dfrac{3}{100.103}\)
\(\Leftrightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+.........+\dfrac{1}{100}-\dfrac{1}{103}\)
\(\Leftrightarrow S=1-\dfrac{1}{103}=\dfrac{102}{103}\)
S=\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
S=\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
S=\(1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(S=1-\dfrac{1}{103}\)
\(S=\dfrac{102}{103}\)
~ chúc bn hk tốt ~
S=\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
=1-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{100}\)-\(\dfrac{1}{103}\)
= 1-\(\dfrac{1}{103}\)=\(\dfrac{103}{103}\)-\(\dfrac{1}{103}\)=\(\dfrac{102}{103}\)
Vậy S= \(\dfrac{102}{103}\)
S = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+....+\dfrac{3}{100.103}\)
S = \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{100}-\dfrac{1}{103}\)
S = \(1-\dfrac{1}{103}\)
S = \(\dfrac{102}{103}\)