\(\dfrac{a}{2}\)= \(\dfrac{b}{3}\)= \(\dfrac{c}{4}\) và \(a^2\)-\(b^2\)+\(2c^2\)= 108
Ta có:
\(\dfrac{a^2}{4}\)= \(\dfrac{b^2}{9}\)= \(\dfrac{2c^2}{32}\)
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\dfrac{a^2}{4}\)=\(\dfrac{b^2}{9}\)=\(\dfrac{2c^2}{32}\)=\(\dfrac{a^2-b^2+2c^2}{4-9+32}\)= \(\dfrac{108}{27}\)=4
\(\dfrac{a^2}{4}\)= 4
\(a^2\)=16
TH1: \(a^2\)=\(4^2\)
=>a=4
TH2: \(a^2\)=\(\left(-4\right)^2\)
=> a=(-4)
\(\dfrac{b^2}{9}\)=4
=> \(b^2\)= 36
TH1: \(b^2\)= \(6^2\)
=> b=6
TH2: \(b^2\)= \(\left(-6\right)^2\)
=> b= (-6)
\(\dfrac{c^2}{16}\)=4
=> \(c^2\)= 64
TH1: \(c^2\)= \(8^2\)
=> c= 8
TH2: \(c^2\)= \(\left(-8\right)^2\)
=> c= (-8)