\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+\frac{3}{2^4}+\frac{3}{2^5}+\frac{3}{2^6}\)
\(\Rightarrow2S=6+3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+\frac{3}{2^4}+\frac{3}{2^5}\)
\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+\frac{3}{2^4}+\frac{3}{2^5}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+\frac{3}{2^4}+\frac{3}{2^5}+\frac{3}{2^6}\right)\)
\(\Rightarrow S=6-\frac{3}{2^6}\)
\(\Rightarrow S=6-\frac{3}{64}=5\frac{61}{64}=\frac{381}{64}\)
S=3+3/2+3/22+3/23+....+3/26
=>2S=\(6+3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^5}\)
=>2S-S=\(6+3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^5}-3-\frac{3}{2}-\frac{3}{2^2}-\frac{3}{2^3}-...-\frac{3}{2^6}\)
=>S=\(6-\frac{3}{2^6}=6-\frac{3}{64}=\frac{381}{64}\)
nhân 2 vào thì thành \(2.\frac{3}{2^6}=\frac{3}{2^5}\)
các bác cho em hoi vì sao ở S2 ta +6 mà bỏ 3/26 ạ các bác giải thích nha