Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC nhọn. Các đường cao AH, BE, CF cắt nhau tại H. Chứng minh rằng cotA+cotB+cotC \(\ge\sqrt{3}\)
cho tam giác ABC có các góc thõa mãn
tanA/2 + tanB/2 <= 2tanC/2
cotA/2 +cotB/2 <= 2cotC/2
CMR: tam giác ABC đều
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
Cho tam giác ABC vuông tại A ( AB\(\ne\) AC) Chứng minh rằng:
a) \(\dfrac{sinB-sinC}{cosB-cosc}\) <0
b) \(\dfrac{tanB-tanC}{cotB-cotC}\) <0
c) cotB+cotC>2
2. CMR với mọi góc nhọn \(\alpha\) ta có: tan2\(\alpha\) +1=\(\dfrac{1}{cos^2\alpha}\)
1) Cho △ABC vuông tại A , chứng minh rằng \(\dfrac{AB}{AC}\)=\(\dfrac{cosB}{cosC}\)
2) Cho △ABC nhọn , 2 đường cao BD và CE . Hãy chứng minh △ADC đồng dạng với △ABC
3) Cho △ABC vuông tại A , AC=5cm , cotB = 2,4
a) Tính AB , BC
b) Tính các TSLG góc C
Rút gọn .
\(A=\dfrac{1+2\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}\)
\(B=\left(\sin\alpha+\cos\alpha\right)^2-\left(\cos\alpha-\sin\alpha\right)^2\)
\(C=\dfrac{\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)}{\sin\alpha\cos\alpha}\)
Mấy bạn giúp đỡ được phần nào thì giúp , giúp hết thì tốt quá .
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị
của góc nhọn a
\(\left(\sqrt{\dfrac{1+\sin\alpha}{1-\sin\alpha}}+\sqrt{\dfrac{1-\sin\alpha}{1+\sin\alpha}}\right)\dfrac{1}{\sqrt{1+\tan^2\alpha}}\)
Cho A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\) với x ≥ 0, x ≠ 0
a) Rút gọn A
b) Tính giá trị của A khi x = \(6+4\sqrt{2}\)
1/Cho góc nhọn x. Hãy rút gọn các biểu thức sau:
a)\(sin^4x+cos^4x+2sin^2x.cos^2x\)
b)\(tan^2x\left(2cos^2x+sin^2x-1\right)\)
c)\(\left(1+tan^2x\right)\left(1-sin^2x\right)-\left(1+cot^2x\right)\left(1-cos^2\right)\)