\(sinx-\sqrt{3}cosx=2\left(\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx\right)\)
\(=2\left(cos60.sinx-sin60.cosx\right)=2sin\left(x-60\right)\)
\(sinx-\sqrt{3}cosx=2\left(\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx\right)\)
\(=2\left(cos60.sinx-sin60.cosx\right)=2sin\left(x-60\right)\)
rút gọn các biểu thức lượng giác sau:
\(\frac{sin^2x}{cosx\left(1+tanx\right)}-\frac{cos^2x}{sinx\left(1+cotx\right)}=sinx-cosx\)
\(\left(tanx+\frac{cosx}{1+sinx}\right)\left(cotx+\frac{sinx}{1+cosx}\right)=\frac{1}{sinx.cosx}\)
P=\(\frac{\text{(sinx+cosx)^2-1 }}{\sqrt{2}cos\left(x+\frac{\Pi}{4}\right).cotx}-\frac{1}{cosx-sinx}\)
ai giúp em bài này với rút gọn biểu thử ạ
Rút gọc các biểu thức:
A=\(\dfrac{\sqrt{2}Cosx-2Cos\left(\dfrac{\Pi}{4}+x\right)}{-\sqrt{2}Sinx+2Sin\left(\dfrac{\Pi}{4}+x\right)}\)
sin^3(1+cotx)+cos^3(1+tanx)=\(\sqrt{2}\)cosx
\(2\sqrt{2}\) sin(sinx+\(\dfrac{\Pi}{4}\))=\(\dfrac{1}{sinx}\)+\(\dfrac{1}{cosx}\)
\(\sqrt{\dfrac{1+sinx}{1-sinx}}+\sqrt{\dfrac{1-sinx}{1+sinx}}=?\) (sao cho gọn nhất)
Cmr:
1) (Sinx)/(1+cosx)+(1+cosx)/sinx=2/sinx
2) cosx/(1-sinx)=cot(bi/4-x/2)
1. Rút gọn A= \(\frac{cos4x-cos2x}{2cos2x+1}\)
2. Biết 2cos7x.sin3x-cos10x = \(\frac{1}{\sqrt{6}}\). Tính cos22x
3. Biết cotx = 4. Tính M=\(\frac{sinx+cosx}{cos^3x}\)
Chứng minh rằng:
a) \(\dfrac{1+sin^2x}{1-sin^2x}=1+2tan^2x\)
b) \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{2}{sinx}\)
c) \(\dfrac{1-sinx}{cosx}=\dfrac{cosx}{1+sinx}\)
d) \(\left(1-cosx\right)\left(1+cot^2x\right)=\dfrac{1}{1+cosx}\)
e) \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=sinx.cosx\)
f) \(\dfrac{1+cosx}{1+cosx}-\dfrac{1-cosx}{1+cosx}=\dfrac{4cotx}{sinx}\)
Cho sinx - cosx = x. Tìm
A=sinx . cosx
B= sinx + cosx
C= sin3x - cos3x