Chứng minh công thức:
\(\sqrt{1+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}}\)
\(=\sqrt{\dfrac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}\)
\(=\sqrt{\dfrac{a^2\left(a^2+2a+1\right)+a^2+2a+1+a^2}{a^2\left(a+1\right)^2}}\)
\(=\sqrt{\dfrac{a^4+2a^3+a^2+a^2+2a+1+a^2}{a^2\left(a+1\right)^2}}\)
\(=\sqrt{\dfrac{a^4+2a^3+3a^2+2a+1}{a^2\left(a+1\right)^2}}\)
=\(\sqrt{\dfrac{\left(a^2\right)^2+2a^2a+2a^2+2a+a^2+1}{a^2\left(a+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}}\)
\(=\dfrac{a^2+a+1}{a\left(a+1\right)}\)
\(=\dfrac{a\left(a+1\right)+1}{a\left(a+1\right)}\)
\(=1+\dfrac{1}{a\left(a+1\right)}\)
\(=1+\dfrac{1}{a}-\dfrac{1}{a+1}\)
Áp dụng công thức ta có:
\(C=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+...+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{1999^2}+\dfrac{1}{2000^2}}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(=2000-\dfrac{1}{2000}=\dfrac{1999}{2000}\)