a/
\(=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}+\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}+1+\sqrt{5}-1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
b/
\(=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)