\(P=\frac{sin^23a.cos^2a-sin^2a.cos^23a}{\left(sina.cosa\right)^2}=\frac{\left(sin3a.cosa-cos3a.sina\right)\left(sin3a.cosa+cos3a.sina\right)}{\frac{1}{4}sin^22a}\)
\(=\frac{4sin\left(3a-a\right).sin\left(3a+a\right)}{sin^22a}=\frac{4sin2a.sin4a}{sin^22a}\)
\(=\frac{8sin^22a.cos2a}{sin^22a}=8cos2a\)