\(CMR:\sin^6a+\cos^6a=1-3\sin^2a\cos^2a\)
Chứng minh: \(\dfrac{sin^2a-tan^2a}{cos^2a-cot^2a}\) = tan6a
\(CMR:\frac{2+\sin^2a\cos^2a}{1+\cos^2a}=1+\sin^2a\)
rút gọn:
a, A=\(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}\)
b, B=\(\frac{sin^2a+sin^2a.tan^2a}{cos^2a+cos^2a.cot^2a}\)
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
chứng minh rằng
a) \(cos^4a+sin^4a-6sin^2a.cos^2a=cos4a\)
b) \(tan\frac{3\pi}{5}-tan\frac{2\pi}{5}-tan\frac{\pi}{5}=tan\frac{\pi}{5}.tan\frac{2\pi}{5}.tan\frac{3\pi}{5}\)
Cm biểu thức ko phụ thuộc x
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)
VỚI tam giác ABC bất kì , tìm giá trị lớn nhất của
M = \(\dfrac{\sin^2A+\sin^2B+\sin^2C}{\cos^2A+\cos^2B+\cos^2C}\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)