Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Yến Lê

Rút gọn biểu thức B

B=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)với x>0;x\(\ne\)1

Nguyễn Ngọc Lộc
24 tháng 6 2021 lúc 20:43

Ta có : \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}-1}\right)=\dfrac{1}{\sqrt{x}}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 20:42

B = \(\left[\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right].\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}}\)

Yeutoanhoc
24 tháng 6 2021 lúc 20:43

`(sqrtx/(sqrtx+1)-1/(x+sqrtx)).(1/(sqrtx+1)+2/(x-1)(x>0,x ne 1)`

`=((x-1))/(x+sqrtx)).((sqrtx-1+2)/(x-1))`

`=(x-1)/(x+sqrtx)*(sqrtx+1)/(x-1)`

`=(x-1)/(sqrtx(sqrtx+1))*1/(sqrtx-1)`

`=1/sqrtx`

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 21:30

Ta có: \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\cdot\left(\sqrt{x}+1\right)}\right)\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}}\)


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Quynh Existn
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Anh Quynh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Ly Ly
Xem chi tiết
Hải Yến Lê
Xem chi tiết
nguyen ngoc son
Xem chi tiết