Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ly Ly

* Cho biểu thức:

B=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\) ( với x>0, x≠1)
a. Rút gọn B
b. Tìm x để B =\(\dfrac{1}{2}\)

Lê Thị Thục Hiền
29 tháng 6 2021 lúc 7:54

Đk:\(x>0;x\ne1\)

\(B=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

\(B=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)\(\Leftrightarrow x=9\) (tm)

Vậy..

Lê Thu Dương
29 tháng 6 2021 lúc 7:56

 

a) \(B=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)

\(B=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(B=\dfrac{1}{\sqrt{x}-1}\)

b) Với \(B=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\Leftrightarrow\sqrt{x}-1=2\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow x=9\)

Vậy...

Chúc bạn học tốt

Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 7:56

a, \(B=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

b, Thay B = 1/2 vào ta được :\(\dfrac{1}{2}=\dfrac{1}{\sqrt{x}-1}\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow x=9\)

Vậy ...

 

 

 

Nguyễn Hoài Đức CTVVIP
29 tháng 6 2021 lúc 8:04

a) B=√x+1+x√x(√x−1)(√x+1):(√x−1)(x+√x+1)√x(√x−1)(√x+1)B=x+1+xx(x−1)(x+1):(x−1)(x+x+1)x(x−1)(x+1)

B=1√x−1B=1x−1

b) Với ⇔1√x−1=12⇔√x−1=2⇔1x−1=12⇔x−1=2

⇔√x=3⇔x=3

⇔x=9⇔x=9

 


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Quynh Existn
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Anh Quynh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Anh Quynh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Anh Quynh
Xem chi tiết