Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nguyễn

Rút gọn biểu thức B

B = (\(\dfrac{15-\sqrt{x}}{x-25}\) + \(\dfrac{2}{\sqrt{x}+5}\)) : \(\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\)

Lấp La Lấp Lánh
31 tháng 8 2021 lúc 18:35

\(B=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\left(đk:x\ne25,x\ge0\right)\)

\(=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)}=\dfrac{1}{\sqrt{x}+3}\)

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 21:59

Ta có: \(B=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\)

\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\cdot\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)

\(=\dfrac{1}{\sqrt{x}+3}\)


Các câu hỏi tương tự
Nguyễn Khánh Phương
Xem chi tiết
Quynh Existn
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
PTTD
Xem chi tiết
Anh Quynh
Xem chi tiết
phạm kim liên
Xem chi tiết
Kim Tuyền
Xem chi tiết