\(\dfrac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\dfrac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
Rút gọn biểu thức:
A= \(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)
\left(b-c\right)}+\frac{1}{\left(c-a\left(c-b\right)\right)}\)
1,cho a,b,c là số thực dương thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}=3\)
và \(\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{1}{\left(a-b\right)^2}=1\)
Tính
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)
Chứng minh rằng:\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\) ≥ \(\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\) ,trong đó a,b,c là các số thực không nhỏ hơn 1
1/rút gọn biểu thức:
\(A=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
CMR : \(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{c+d+a}{\left(c-d\right)\left(d-b\right)\left(a-b\right)\left(x-b\right)}+\frac{d+a+b}{\left(d-c\right)\left(a-c\right)\left(b-c\right)\left(x-c\right)}\)\(+\frac{a+b+c}{\left(a-d\right)\left(b-d\right)\left(c-d\right)\left(x-d\right)}\)\(=\frac{x-a-b-c-d}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}.\)
Tính giá trị của biểu thức:
E = \(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết \(1-\frac{x^2}{abc}=0\)
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
Cho 3 số thực dương a, b, c.
Chứng minh rằng: \(\frac{b}{a\left(a+b\right)}+\frac{c}{b\left(b+c\right)}+\frac{a}{c\left(c+a\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a,b,c đôi một khác nhau thõa mãn ab+bc+ac=1
Tính giá trị biểu thức :
a)A\=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b)B=\(\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)