Rút gọn biểu thức:
a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
b) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Rút gọn biểu thức
a)\(\left(x+y\right)^3+\left(x-y\right)^3-2x^3\)
b) \(\left(x+y\right)^2-\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)
c)\(\left(3x+1\right)^2+2\left(9x^2-1\right)+\left(3x-1\right)^2\)
d) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
Thu gọn đa thức \(P\left(x\right)=x^2+\left(x+2\right)^2+\left(x+3\right)^2+...+\left(x+98\right)^2-\left[\left(x+1\right)^2+\left(x+3\right)^2+...+\left(x+99\right)^2\right]\)
đc đa thức P(x) = ax + b vậy a - b là
Giải các phương trình sau
a) \(\left(2x-2\right)^3=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)
b) \(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x+2\right)+\left(x+1\right)+38\)
c) \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-2\right)-8\)
Cho biểu thức
A=\(\left[\frac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\frac{2x^2-x-10}{2\left(x^3-x^2+x-1\right)}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x+1\right)}\right]\)
CHo biểu thức: \(A=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}+\dfrac{2x+4}{4-x^2}\right).\left(x+\dfrac{5}{x-3}\right)\). Rút gọn A
Bài 1 : dùng hẳng đẳng thức để khai triển và thu gọn
a) \(\left(2x^2+\frac{1}{3}\right)^3\)
b) \(\left(2x^2y-3xy\right)^3\)
c) \(\left(-3xy^4+\frac{1}{2}x^2y^2\right)^3\)
d) \(\left(-\frac{1}{3}ab^2-2a^3b\right)^3\)
e) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
f) \(x.\left(x-1\right).\left(x+1\right)-\left(x+1\right).\left(x^2-x+1\right)\)
g) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x-4\right).\left(x+4\right)\)
h) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
k) \(\left(x^4-3x^2+9\right).\left(x^2+3\right)+\left(3-x^2\right)^3-9x^2.\left(x^2-3\right)\)
l) \(\left(4x+6y\right).\left(4x^2-6xy+9y^2\right)-54y^3\)
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)