\(A=4sinx.cosx.sin\left(-3x\right)+cosx\)
\(=-2sin2x.sin3x+cosx\)
\(=cos5x-cosx+cosx\)
\(=cos5x\)
\(A=4sinx.cosx.sin\left(-3x\right)+cosx\)
\(=-2sin2x.sin3x+cosx\)
\(=cos5x-cosx+cosx\)
\(=cos5x\)
a Cho , \(\sin\alpha=\frac{3}{5}\) \(0< \alpha< \frac{\pi}{2}\)Tính \(\sin\left(\alpha+\frac{\pi}{6}\right)\), \(\sin2\alpha\)
b Cho , \(\sin\alpha=-\frac{4}{5}\) \(\frac{\pi}{2}< \alpha< \pi\) Tính \(\cos\left(\alpha-\frac{\pi}{3}\right)\), \(\cos2\alpha\)
a) Rút gọn biểu thức
\(A=\dfrac{\sin4x+2\sin2x}{\sin4x-2\sin2x}.\cot\left(\dfrac{3\pi}{2}-x\right)\) (khi biểu thức có nghĩa)
b) Cho \(\cot\alpha=\dfrac{4}{3},3\pi< \alpha< \dfrac{7\pi}{2}\). Tính \(\cos\left(\dfrac{2\pi}{3}-\alpha\right)\)
Chọn đáp án đáp án đúng:
1. Cho \(sin\alpha.cos\left(\alpha+\beta\right)=sin\beta\) với \(\alpha+\beta\ne\frac{\pi}{2}+k\pi,\alpha\ne\frac{\pi}{2}+l\pi\left(k,l\in Z\right)\) ta có:
A. \(tan\left(\alpha+\beta\right)=2cot\alpha\)
B. \(tan\left(\alpha+\beta\right)=2cot\left(\beta\right)\)
C. \(tan\left(\alpha+\beta\right)=2tan\beta\)
D. \(tan\left(\alpha+\beta\right)=2tan\alpha\)
2. Rút gọn biểu thức \(A=\frac{sin3x+cos2x-sinx}{cosx+sin2x-cos3x}\left(sin2x\ne0;2sinx+1\ne0\right)\)
(Hic ..... cao nhân nào giúp me thì giải thích rõ ràng chút được ko ạ?)
Rút gọn biểu thức sau: \(A=\sin^2\left(45^o+\alpha\right)-\sin^2\left(30^o-\alpha\right)-\sin15^o.\cos\left(15^o+2\alpha\right)\)
Tìm giá trị lớn nhất \(P=4sin^2+\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\)
1) Tim tap xac dinh D:
a) \(\left\{\dfrac{x\ne\dfrac{\Pi}{2}+k\Pi}{x\ne\dfrac{\Pi}{4}+k\dfrac{\Pi}{2}}\right\}\)
a) Cho \(\cot\alpha=-3\sqrt{2}\) với ( 90 < a <180 độ). Khi đó giá trị \(\tan\dfrac{\alpha}{2}+\cot\dfrac{\alpha}{2}\) bằng
b) Cho \(\sin x+\cos x=\dfrac{3}{2}\) thì sin 2a bằng
c) Cho \(\sin x+\cos x=\dfrac{1}{2}\) và \(0< x< \dfrac{\pi}{2}\). Tính giá trị sin x
1) Xet x ∈ [\(\dfrac{\Pi}{2}\) ; π ]. Neu x1 < x2 thi Sin x1.......Sin x2
@) Chứng minh đẳng thức \(\frac{2sin^2\left(x+\frac{\pi}{4}\right)-1}{cotx-sinx.cosx}=2tan^2x\) khi các biểu thức đều xác định
b) Tìm giá trị của tham số m để bpt \(-1\le\frac{x^2-2x-m}{x^2+2x+2019}< 2\) nghiệm đúng với mọi số thực x