Tìm điều kiện xác định và rút gọn các biểu thức sau :
a/ \(A=\left(\dfrac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\dfrac{3}{x^3-\sqrt{27}}\right).\left(\dfrac{x}{\sqrt{3}}+\dfrac{\sqrt{3}}{x}+1\right)\)
b/ \(B=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
c/ \(C=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\)
d/ \(\left[\dfrac{1}{x-1}+\dfrac{x^2+1-2x}{\left(x-1\right)^2+3x}-\dfrac{1+4x-2x^2}{x^3-1}\right]:\dfrac{2}{x^2+1}\)
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
rút gọn B=\(\dfrac{\sqrt{1-\sqrt{1-x^2}}.\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\)
cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho \(P=\dfrac{-2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)}\)
Xác định giá trị của x để P nhận giá trị nguyên
Thu gọn:
a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
b) \(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)
Rút gọn các biểu thức sau
D = \(\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)
E =\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a-1}}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)
F = \(\left(\frac{1}{\sqrt{a-1}}+\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
1,\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
2,Giải phương trình:
a \(\dfrac{3x}{a}\) +a\(^2\) = \(\dfrac{ax}{3}-3a\)
b. \(\dfrac{1}{3\left(4-x\right)}-\dfrac{1}{a\left(4-x\right)}=\dfrac{2}{3\left(3-x\right)}-\dfrac{2}{a\left(3-x\right)}\)
Và tìm giá trị của a để phg trình có 1 nghiệm
3, Giải BPT:
a. \(x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\) và tìm giá trị nguyên âm của x thỏa mãn BPT
b. \(5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)
4, Cho 0 < x < 1. Tìm GTNN của biểu thức A= \(\dfrac{3}{1-x}+\dfrac{4}{x}\)
Các bn giúp mik vs,mik đag cần gấp.Mik xin cảm ơn ak
Rút gọn:
\(A=\dfrac{x}{5-x}+\left(\dfrac{x}{x^2-25}+\dfrac{5-x}{5x+x^2}\right):\dfrac{2x-5}{x^2+5x}\)
\(B=\left[\left(\dfrac{1}{x^2}+1\right)\cdot\dfrac{1}{1+2x+x^2}+\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{\left(1+x\right)^3}\right]:\dfrac{x-1}{x^3}\)