b)
\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)=6-121=-115\)
a)
\(\dfrac{\left(3\sqrt{3}+5\sqrt{2}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{\left(3\sqrt{3}+5\sqrt{2}\right)\left(5-2\sqrt{6}\right)}{5\sqrt{3}-5\sqrt{2}}\)
\(=\dfrac{\left(3\sqrt{3}+5\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{5\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\dfrac{9-3\sqrt{6}+5\sqrt{6}-10}{5}=\dfrac{-1+2\sqrt{6}}{5}\)