ĐKXĐ:\(a\ge0;a\ne1\)
P=\((\sqrt{a}-1+\sqrt{a}+1)\times\left(\sqrt{a}+1\right)\)
=\(2\sqrt{a}\times\left(\sqrt{a}+1\right)\)
=2a+2\(\sqrt{a}\)
a: ĐKXĐ: a>=0; a<>1
\(P=\left(\sqrt{a}-1+\sqrt{a}+1\right)\cdot\dfrac{1}{\sqrt{a}+1}=\dfrac{2\sqrt{a}}{\sqrt{a}+1}\)
b: Khi a=4-2can3 thì \(P=\dfrac{2\left(\sqrt{3}-1\right)}{\sqrt{3}-1+1}=\dfrac{2\sqrt{3}-2}{\sqrt{3}}=\dfrac{6-2\sqrt{3}}{3}\)
c: Để P=1/4 thì \(\dfrac{2\sqrt{a}}{\sqrt{a}+1}=\dfrac{1}{4}\)
=>8căn a=căn a+1
=>căn a=1/7
=>a=1/49