Đặt x+4=a
\(A=\left(a-1\right)^4+\left(a+1\right)^4-16\)
\(=\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2-16\)
\(=a^4+4a^2+1-4a^3+2a^2-4a+a^4+4a^2+1+4a^3+2a^2+4a-16\)
\(=2a^4+12a^2+2-16\)
\(=2\left(a^4+6a^2-7\right)\)
\(=2\left(a^2+7\right)\left(a^2-1\right)\)
\(=2\left[\left(x+4\right)^2+7\right]\left(x+3\right)\left(x+2\right)\)