Bài 2:
a: \(=\left(4x^2+6x+2x+3\right)\left(x^2+2x+1\right)-18\)
\(=\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18\)
Đặt x^2+2x=a
\(A=\left(4a+3\right)\left(a+1\right)-18\)
\(=4a^2+7a-15\)
\(=4a^2+12a-5a-15=\left(a+3\right)\left(4a-5\right)\)
\(=\left(x^2+2x+3\right)\left(4x^2+8x-5\right)\)
\(=\left(x^2+2x+3\right)\left(4x^2+10x-2x-5\right)\)
\(=\left(x^2+2x+3\right)\left(2x+5\right)\left(2x-1\right)\)
b: \(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)