\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+2x^3+4x^3+8x^2+3x^2+6x+1\)
\(=x^3\left(x+2\right)+4x^2\left(x+2\right)+3x\left(x+2\right)+1\)
\(=\left(x^3+4x^2+3x\right)\left(x+2\right)+1\) \(=x\left(x^2+4x+3\right)\left(x+2\right)+1\)
\(=x\left(x^2+x+3x+3\right)\left(x+2\right)+1\)
\(=x\left(x\left(x+1\right)+3\left(x+1\right)\right)\left(x+2\right)+1\)
\(=x\left(x+1\right)\left(x+3\right)\left(x+2\right)+1\)
Giả sử : \(x^4+6x^3+11x^2+6x+1=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\Leftrightarrow x^4+6x^3+11x^2+6x+1=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất vp với vt ta được :
\(\left\{{}\begin{matrix}a+c=6\\ac+b+d=11\\ad+bc=6\\bd=1\end{matrix}\right.\)
Giải hệ pt trên ta được a = 3 b = 1 c = 3 d = 1
Vậy \(x^4+6x^3+11x^2+6x+1=\left(x^2+3x+1\right)\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)