Cho biểu thức \(M=\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}\) với a,b>0 và \(a\ne b\) . Rút gọn M và tính giá trị biểu thức M biết \(\left(1-a\right).\left(1-b\right)+2\sqrt{ab}=1\)
C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)
Rút gọn biểu thức : \(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{a-b}-\frac{b}{b-\sqrt{ab}}+\frac{a}{\sqrt{ab}+a}\right)-\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{2}\) với a,b > 0 \(a\ne b\)
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
Bài 1: Cho các số thực dương a,b ; a≠b. Chứng minh:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
Bài 2: Cho các biểu thức; \(P=\frac{5x-12\sqrt{x}-32}{x-16}\) và \(Q\left(x\right)=x+\sqrt{x}+3\).
a) Tìm số nguyên x0 sao cho P(x0) và Q(x0) là các số nguyên, đồng thời P(x0) và ước của Q(x0)
b) Cho \(t=\frac{x}{x^2-x+1}\). Tính giá trị biểu thức \(A=\frac{x^2}{x^4+x^2+1}\) theo t
Bài 3: Cho biểu thức:
\(T=\left(\frac{x+4\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{x+\sqrt{x}}{1-x}\right):\left(\frac{1}{\sqrt{x}+1}-\frac{1}{1-\sqrt{x}}\right)\left(x>0;x\ne1\right)\)
Rút gọn biểu thức T. Có bao nhiêu giá trị của x để \(A\ge\frac{1+\sqrt{2018}}{\sqrt{2018}}\)
cho biểu thức: M=\(\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\)
1, rút gọn M
2, tính giá trị a; b biết khi \(\frac{a}{b}=\frac{1}{4}\) thì M=1
Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Rút gọn P
b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4
Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1
a) Rút gọn A
b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt GTNN
Bài 3: Cho biểu thức: \(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\) vs x ≥ 0, x ≠ 1
a) Rút gọn P
b) Tìm giá trị của x để P = \(\frac{3}{4}\)
c) Tìm GTNN của biểu thức A = \(\left(\sqrt{x}-4\right)\left(x-1\right).P\)
Bài 4: Cho biểu thức: \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\); vs x ≥ 0, x ≠ 1
a) Rút gọn A
b) Tìm x để \(\frac{1}{A}\) là 1 số tự nhiên
Cho các số thực dương a,b, c. Tìm GTNN của biểu thức
\(P=\frac{a}{\sqrt[3]{a}+\sqrt[3]{bc}}+\frac{b}{\sqrt[3]{b}+\sqrt[3]{ca}}+\frac{c}{\sqrt[3]{c}+\sqrt[3]{ab}}+\frac{9\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{4\left(a+b+c\right)}\)
1 . cho biểu thức : K = \(\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right).\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}\)
a. rút gọn K
b. tính giá trị của K khi a = \(4+2\sqrt{3}\) và b = \(4-2\sqrt{3}\)