giải giúp mấy bài sau nha mn
thanks nhiều
1. Tìm nghiệm nguyên của pt:
a) \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
b) \(12x^2+6xy+3y^2=28\left(x+y\right)\)
2. Cho x,y,z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\)
C/m: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}=< 1\)
3. Cho a,b,c>0 và abc=1
C/m: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}>=\dfrac{3}{2}\)
4. Cho x,y>0 và x + y >= 2
Tìm GTNN của biểu thức \(A=4\left(x+y\right)+\dfrac{1}{x+1}+\dfrac{1}{y+1}+1\)
Cho 3 số thực x,y,z phân biệt. Chứng minh rằng: \(\dfrac{x^2}{\left(y-z\right)^2}+\dfrac{y^2}{\left(z-x\right)^2}+\dfrac{z^2}{\left(x-y\right)^2}>=2\)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\dfrac{1}{16}\)
Cho các số thực x,y thỏa mãn: \(\dfrac{x^2+y^2}{2}=y-2x\). Chứng minh rằng:
\(\left|\sqrt{2-2x}-\sqrt{4x+6y+20}\right|=3\sqrt{2}\)
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
chứng minh rằng :
a, x+2y+\(\dfrac{25}{x}\)+\(\dfrac{27}{y^2}\)\(\ge\) 19 ( \(\forall\)x,y \(\)> 0 )
b, \(x+\dfrac{1}{\left(x-y\right)y}\ge3\) ( \(\forall\)x>y>0 )
c,\(\dfrac{x}{2}+\dfrac{16}{x-2}\ge13\left(\forall x>2\right)\)
d, \(a+\dfrac{1}{a^2}\ge\dfrac{9}{4}\left(\forall x\ge2\right)\)
e, a+\(\dfrac{1}{a\left(a-b\right)^2}\ge2\sqrt{2}\) ( \(\forall x>y\ge0\))
f, \(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3[\forall a\ge\dfrac{1}{2};\dfrac{a}{b}>1]\)
g, x+\(\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\left(\forall x>y\ge0\right)\)
h, \(2a^4+\dfrac{1}{1+a^2}\ge3a^2-1\)
Đây là đề bài:
Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều!
Có \(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\)
Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow Min\left(1\right)=\dfrac{1}{2}\Leftrightarrow x=y\\\)
Xét nhóm 2: Vì \(x+y\le4\Rightarrow2\sqrt{xy}\le4\Rightarrow xy\le4\Rightarrow\dfrac{1}{xy}\ge\dfrac{1}{4}\Rightarrow Min\left(2\right)=\dfrac{1}{2}\Leftrightarrow xy=4\\ \)
Xét nhóm 3:Áp dụng BĐT Cô-si ta được:\(\dfrac{32}{xy}+2xy\ge2\sqrt{\dfrac{32}{xy}\cdot2xy}=16\Rightarrow Min\left(3\right)=16\Leftrightarrow x=y\\ \)
Từ các NX trên\(\Rightarrow MinP=\dfrac{1}{2}+\dfrac{1}{2}+16=17\left(ĐK:\right)x=y;xy=4hayx=y=2\)
Áp dụng BĐT Cô-si để tìm Max
a. \(y=\left(x+3\right)\left(5-x\right),\left(-3\le x\le5\right)\)
b. \(y=x\left(6-x\right)\left(0\le x\le6\right)\)
c. \(y=\left(x+3\right)\left(5-2x\right)\left(-3\le x\le\frac{5}{2}\right)\)
d. \(y=\left(2x+5\right)\left(5-2x\right)\left(-\frac{5}{2}\le x\le5\right)\)
e. \(y=\left(6x+3\right)\left(5-2x\right)\left(-\frac{1}{2}\le x\le\frac{5}{2}\right)\)
f. \(y=\frac{x}{x^2+2},x\ge0\)
g. \(y=\frac{x^2}{\left(x^2+2\right)^3}\)
Cho các số thực dương x,y,z thỏa mãn xyz ≤ 1
CMR:\(\dfrac{x\left(1-y^3\right)}{y^3}+\dfrac{y\left(1-z^3\right)}{z^3}+\dfrac{z\left(1-x^3\right)}{x^3}\)≥ 0