a: \(P=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)
\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)
b: Để \(\dfrac{\sqrt{x}}{P}=\sqrt{x}\cdot\dfrac{-\sqrt{x}}{x-1}=\dfrac{-x}{x-1}\) là số nguyên thì
-x+1-1 chia hết cho x-1
=>\(x-1\in\left\{1;-1\right\}\)
=>x=2