a: \(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{3\left(\sqrt{x}-1\right)}{x+\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+x}\)
\(=\dfrac{3}{x+\sqrt{x}+1}\)
c: Để P có giá trị nguyên thì \(x+\sqrt{x}+1\inƯ\left(3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x}+1=1\\x+\sqrt{x}+1=3\end{matrix}\right.\Leftrightarrow x+\sqrt{x}-2=0\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\)
=>x=1(loại)