chứng minh rằng với mọi số tự nhiên n thì \(\left(x^n-1\right)\left(x^{n+1}-1\right)\)chia hết cho\(\left(x+1\right)\left(x-1\right)^2\)
1. Tìm đa thức P(x) bậc 3 biết P(x) chia hết cho \(x-1\) và \(x-2\) và khi chia \(x^2-x+1\) thì dư \(2x-3\)
2. Chứng minh rằng đa thức \(P\left(x\right)=x^{100}+x^2+1\) chia hết cho đa thức \(Q\left(x\right)=x^2-x+1\)
Xin chân thành cảm ơn!
Cho x,y là các số nguyên thỏa mãn \(\left(2x+y\right)^2+\left(x+4y\right)^2\) chia hết cho 3 .chứng minh rằng xy chia hết cho 9
14 Chứng minh rằng \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}+1\) chia hết cho \(x^2-1\)
a) Chứng minh rằng: n3+2012n chia hết cho 48 với mọi n chẵn.
b) Tìm giá trị lớn nhất của biểu thức \(B=\frac{x+1}{\left|x-2\right|}\left(x\in Z\right)\)
Bài 1: Chứng minh rằng biểu thức không phụ thuộc vào giá trị của biến
a) \(\left(x-1\right)^3-\left(x-1\right).\left(x^2+x+1\right)-3.\left(1-x\right).x\)
Bài 2: Tìm x: \(\left(x-2\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2=49\)
Bài 3: Tìm 3 số tự nhiên liên tập biết tích 2 số đầu nhỏ hơn tích hai số sau là 50.
Bài 4: Chứng minh rằng: \(\left(n-1\right).\left(n+1\right)-\left(n-7\right).\left(n-5\right)⋮12\)
GIÚP MIK VS!!!! MIK ĐAG CẦN GẤP.
cho P =\(7.2014^n+12.1995^n\) với \(n\subseteq N;Q=\dfrac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}\).Chứng minh:
a. P chia hết cho 9
b. Q không phụ thuộc vào x và Q>0
Tìm a, b, c để:
\(\left(x^4+ax^3+bx+c\right)\) chia hết cho \(\left(x-3\right)^3\)
\(\left(2x^4+ax^2+bx+c\right)chia\) hết cho x - 2 và khi chia cho \(x^2-1\) dư x
Bài 1: a, chứng minh rằng nếu P(x) chia hết cho (x - a) với a là hằng số thì P(x) có 1 nghiệm là x = a
b, chứng minh rằng nếu P(x) chia hết cho (x - a) với a là hằng số thì P(x) có 1 nghiệm là x = a
Bài 2: K thực hiện phép chia, hãy xác đinh xem đa thức dư ở trong mỗi phép chia là bao nhiêu
a, \(\left(x^3+2x^2-3x+9\right)⋮\left(x+3\right)\)
b, \(\left(9x^4-6x^3+15x^2+2x-1\right)⋮\left(3x^2-2x+5\right)\)