=>1+tan^2x=2tan^2x-3tanx+3
=>2tan^2x-3tanx+3-1-tan^2x=0
=>tan^2x-3tanx+2=0
=>(tanx-2)(tanx-1)=0
=>x=pi/4+kpi hoặc x=arctan(2)+kpi
=>1+tan^2x=2tan^2x-3tanx+3
=>2tan^2x-3tanx+3-1-tan^2x=0
=>tan^2x-3tanx+2=0
=>(tanx-2)(tanx-1)=0
=>x=pi/4+kpi hoặc x=arctan(2)+kpi
Tìm tập nghiệm của phương trình: \(\dfrac{\sqrt[]{3}sin^2x-2sinxcosx-\sqrt{3}cos^2x}{\left(2sinx+3\right)\left(4cos^2x-3\right)}=0\)
Nghiệm của phương trình cos^2x+2cos2x-3=0 là
Tìm nghiệm dương nhỏ nhất của phương trình
\(\cos\pi\left(x^2+2x-\dfrac{1}{2}\right)=\sin\left(\pi x^2\right)\)
Giải phương trình:
1) \(cos\left(2x + \dfrac{\pi}{6}\right) = cos\left(\dfrac{\pi}{3} - 3x\right)\)
2) \(sin\left(2x + \dfrac{\pi}{6}\right) = sin\left(\dfrac{\pi}{3} - 3x\right)\)
Số giá trị nguyên của m để phương trình \(2\sin^2x-\sin x\cos x-m\cos^2x=1\) có nghiệm trên
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
Giải phương trình:
\(Tan\left(\dfrac{\pi}{2}+x\right)-3Tan^2x=\dfrac{Cos2x-1}{Cos^2x}\)
Giải phương trình:
\(\dfrac{\sqrt{3}}{Cos^2x}+\dfrac{4+2Sin2x}{Sin2x}-2\sqrt{3}=2\left(Cotx+1\right)\)
Nghiệm dương nhỏ nhất của phương trình sinx+sin 2x=cos x+\(2cos^2x\) là
phương trình \(\dfrac{tanx}{1-tan^2x}\)=\(\dfrac{1}{2}\)cot(x+\(\dfrac{\pi}{4}\)) có nghiệm là