Ta có: n + 4 ⋮ n + 1
⇒ n + 1 + 3 ⋮ n + 1
⇒ 3 ⋮ n +1
⇒ n + 1 ∈ { 1;-1;3;-3 }
⇒ n ∈ { 0;-2;2;-4}
Vậy n ∈ { 0;-2;2;-4}
a, \(n+4⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+1=1\\n+1=3\\n+1=-1\\n+1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=2\\n=-2\\n=-4\end{matrix}\right.\)
Vậy ...
n+4= n+1+3
để (n+4) \(⋮\)(n+1)
=> 3\(⋮\)(n+1)
=> n+1 \(\in\)Ư(3)=\(\left\{-1,+1,-3,+3\right\}\)
=> n\(\in\)\(\left\{-2,0,-4,2\right\}\)