Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)
vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \(\frac{6}{5}v\)
Đổi 10' = \(\frac{1}{6}h\)
Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)
thời gian ô tô đi trong nửa quãng đường còn lại là: t - \(\frac{1}{6}\)
Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
\(\Rightarrow\frac{v}{\frac{6}{5}v}=\frac{t-\frac{1}{6}}{t}=\frac{5}{6}\)
\(\Rightarrow\frac{t-\frac{1}{6}}{5}=\frac{t}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}\)
\(\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}\)
Vậy thời gian ô tô đi từ A -> B là:
\(t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)\)