\(\lim\limits_{x\rightarrow-3}\frac{\sqrt{2x+10}-\sqrt[3]{x+11}}{x^3+27}=\lim\limits_{x\rightarrow-3}\frac{\sqrt{2x+10}-2+2-\sqrt[3]{x+11}}{x^3+27}=\lim\limits_{x\rightarrow-3}\frac{\frac{2\left(x+3\right)}{\sqrt{2x+10}+2}+\frac{-3-x}{4+2\sqrt[3]{x+11}+\sqrt[3]{\left(x+11\right)^2}}}{\left(x+3\right)\left(x^2-3x+9\right)}\)
=> \(\lim\limits_{x\rightarrow-3}S=\lim\limits_{x\rightarrow-3}\frac{\frac{2}{\sqrt{2x+10}+2}-\frac{1}{4+2\sqrt[3]{x+11}+\sqrt[3]{\left(x+11\right)^2}}}{x^2-3x+9}=\frac{5}{324}\)