A = ( 2x + 1/3)^4 - 1
Vì (2x + 1/3) ^ 4 \(\ge\) 0 với mọi x thuộc Q
\(\Rightarrow\) (2x + 1/3)^4 - 1 \(\ge\) -1
\(\Rightarrow\) A \(\ge\) -1
Dấu = xảy ra khi: (2x + 1/3)^4=0
2x + 1/3 = 0
2x = 1/3
x = 1/6
Vậy MinA= -1 tại x=1/6
câu giá trị lớn nhất bạn là tương tự giá trị nhỏ nhất
55.
a. Ta có: \(\left(2x+\dfrac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\forall x\)
Hay \(A\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+\dfrac{1}{3}=0\Leftrightarrow2x=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy GTNN của A là -1 \(\Leftrightarrow x=-\dfrac{1}{6}\)
b. Ta có: \(\left(\dfrac{4}{9}x-\dfrac{2}{5}\right)^6\ge0\forall x\Rightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{5}\right)^6\le0\forall x\)
\(\Rightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{5}\right)+3\le3\forall x\)
Hay \(B\le3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{4}{9}x-\dfrac{2}{5}=0\Leftrightarrow\dfrac{4}{9}x=\dfrac{2}{5}\Leftrightarrow x=\dfrac{2}{5}:\dfrac{4}{9}\Leftrightarrow x=\dfrac{9}{10}\)
Vậy GTLN của B là 3 \(\Leftrightarrow x=\dfrac{9}{10}\)
50.
a. \(5^x\cdot\left(5^3\right)^2=625\Leftrightarrow5^x\cdot5^6=5^4\Leftrightarrow5^{x+6}=5^4\Leftrightarrow x+6=4\Leftrightarrow x=-2\)
Vậy x = -2
b. \(\left(\dfrac{12}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-2}-\left(-\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{12}{25}\right)^x=\left(\dfrac{3}{5}\right)^2-\dfrac{81}{625}^x\Leftrightarrow\left(\dfrac{12}{25}\right)^x=\dfrac{9}{25}-\dfrac{81}{625}\Leftrightarrow\left(\dfrac{12}{25}\right)^x=\dfrac{144}{625}\Leftrightarrow\left(\dfrac{12}{25}\right)^x=\left(\dfrac{12}{25}\right)^2\Leftrightarrow x=2\)
Vậy x = 2
c. \(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\Leftrightarrow\left(-\dfrac{3}{4}\right)^{3x-1}=\left(-\dfrac{3}{4}\right)^{-4}\Leftrightarrow3x-1=-4\Leftrightarrow3x=-3\Leftrightarrow x=-1\)
Vậy x = -1