\(\lim\limits_{x\rightarrow3^-}\sqrt{x^2+8x+3}\)
\(=\sqrt{\left(-3\right)^2+8\cdot\left(-3\right)^2+3}\)
\(=\sqrt{9+8\cdot9+3}=\sqrt{12+72}=\sqrt{84}=2\sqrt{21}\)
\(\lim\limits_{x\rightarrow3^-}\sqrt{x^2+8x+3}=\sqrt{3^2+8.3+3}=6\)
\(\lim\limits_{x\rightarrow3^-}\sqrt{x^2+8x+3}\)
\(=\sqrt{\left(-3\right)^2+8\cdot\left(-3\right)^2+3}\)
\(=\sqrt{9+8\cdot9+3}=\sqrt{12+72}=\sqrt{84}=2\sqrt{21}\)
\(\lim\limits_{x\rightarrow3^-}\sqrt{x^2+8x+3}=\sqrt{3^2+8.3+3}=6\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^3-x^2}}{\sqrt{x-1}+1-x}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+x}-2\sqrt{3}}{x-3}\)
\(\lim\limits_{x\rightarrow-2}\dfrac{x^4+8x}{x^3+2x^2+x+2}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{x^2-x+1}{x^2-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x+6}-3}{\sqrt{2x-2}-2}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+3}-x}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^3-3x^2+2}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow1^-}\dfrac{x^2+3x+2}{\left|x+1\right|}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{x+5}-2}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{x+5}-2}{x^2-4x+3}\)
a. \(\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{4x}-2}{x-2}\) b. \(\lim\limits_{x\rightarrow3}\frac{2+\sqrt[3]{19-x^3}}{\sqrt{4x-3}-3}\)
\(\lim\limits_{x\rightarrow3^-}\dfrac{\sqrt{x^2-7x+12}}{\sqrt{9-x^2}}\)
Tìm các giới hạn sau:
A=\(\lim\limits_{x\rightarrow1}\frac{x^4-3x+2}{x^3+2x-3}\)
B=\(\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{x^2+1}+2x+1}{\sqrt[3]{2x^3+x+1}+x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x^2-x+1}-\sqrt[3]{2x+3}}{3x^2-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2+x}+\sqrt[3]{8x^3+x-1}}{\sqrt[4]{x^4+3}}\)