Ta dùng quy tắc L'Hospital để giải:
\(lim\dfrac{2^{n+1}+3n+10}{3n^2-n+2}=lim\dfrac{2^{n+1}.ln2+3}{6n-1}=lim\dfrac{2^{n+1}.\left(ln2\right)^2+3}{6}=+\infty\)
Ta dùng quy tắc L'Hospital để giải:
\(lim\dfrac{2^{n+1}+3n+10}{3n^2-n+2}=lim\dfrac{2^{n+1}.ln2+3}{6n-1}=lim\dfrac{2^{n+1}.\left(ln2\right)^2+3}{6}=+\infty\)
tính giới hạn
1.\(\lim\limits\left(n^3+4n^2-1\right)\)
2.\(lim\dfrac{\left(n+1\right)\sqrt{n^2-n+1}}{3n^2+n}\)
3.\(lim\dfrac{1+2+....+n}{2n^2}\)
4.\(lim\dfrac{3^n-4.2^{n-1}-10}{7.2^n+4^n}\)
Tính
lim \(\dfrac{sin\left(3n+n^2\right)}{3n-1}\)
a, lim \(\dfrac{\sqrt{n+1}}{1+\sqrt{n}}\)
b, lim \(\dfrac{1+2+...+n}{n^2+2}\)
c, lim \((\sqrt{n^2+n+1}-n)\)
d, lim \((\sqrt{3n-1}-\sqrt{2n-1})\)
e, lim \((\sqrt[3]{n^3+2n^2}-n)\)
g, lim \(\dfrac{(2)^{n}+(3)^{n+2}}{4×(3)^{n}+(2)^{n+3}}\)
Tìm giới hạn các dãy số sau
a) \(lim\dfrac{2^n+6^n-4^{n-1}}{3^n+6^{n+1}}\)
b) \(lim\dfrac{1+3+5+...+\left(2n+1\right)}{3n^2+4}\)
c) \(lim\dfrac{1+2+3+...+n}{n^2-3}\)
d) \(lim\left[\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right]\)
e) \(lim\left[\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\right]\)
Tìm giới hạn dãy số sau
\(lim\dfrac{\left(2n-1\right)\left(3n^2+2\right)^3}{-2n^5+4n^3-1}\)
\(lim\left(3.2^{n+1}-5.3^n+7n\right)\)
giá trị của D = lim (n+1)/n^2[(căn bậc hai của 3n^2 + 2) - (căn bậc hai của 3n^2 - 1)] =
a; lim\(\frac{\sqrt{6n^4+n+1}}{2n^2+1}\)
b; lim \(\frac{\left(n+1\right)\left(2n+1\right)^2\left(3n+1\right)^3}{n^2\left(n+2\right)^2\left(1-3n\right)^2}\)
Tìm giới hạn sau \(lim\dfrac{\left(3n+1\right)\left(1-8n\right)}{\sqrt[3]{n^3+3n-9}}\)
lim n(\(\sqrt[3]{n^3-3n^2}-3n\))
lim (\(\sqrt{4n^2+n}+\sqrt[3]{2n^2-8n^3}\))