Câu III ý 2)
Ta có:
\(P^2\le\left(a^2+b^2\right)\left[3b\left(a+2b\right)+3a\left(b+2a\right)\right]=2\left[6\left(a^2+b^2\right)+3\cdot2ab\right]\)
\(\le2\left[6\cdot2+3\left(a^2+b^2\right)\right]\le36\Rightarrow P\le6.\)
Đẳng thức xảy ra khi $a=b=1.$
Vậy...
Bài I
1 ĐKXĐ x\(\ge-2\)
\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}+\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\) ( Do \(\sqrt{x+5}+\sqrt{x+2}>0\) ≠ 0 nên có thể nhân cả hai vế )\(\Leftrightarrow\left(x+5-x-2\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\) \(\Leftrightarrow1-\sqrt{x+5}+\sqrt{\left(x+5\right)\left(x+2\right)}-\sqrt{x+2}=0\Leftrightarrow\left(1-\sqrt{x+5}\right)\left(1-\sqrt{x+2}\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(L\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
Vậy.....
2
Xin gửi đến các bạn đáp án bài 5 :>
I.2
\(\left\{{}\begin{matrix}\left(x^2-y^2\right)\left(x-y\right)=3\left(1\right)\\\left(x^2+y^2\right)\left(x+y\right)=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\left(x+y\right)\left(x^2-2xy+y^2\right)=15\\\left(x^2+y^2\right)\left(x+y\right)=15\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)\left(4x^2-10xy+4y^2\right)=0\)
\(\Leftrightarrow2\left(x+y\right)\left(x-2y\right)\left(2x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\x=2y\\2x=y\end{matrix}\right.\)
TH1: \(x=-y\)
\(\left(1\right)\Leftrightarrow0x=3\)
\(\Rightarrow\) vô nghiệm
TH2: \(x=2y\)
\(\left(1\right)\Leftrightarrow3y^3=3\)
\(\Leftrightarrow y=1\Rightarrow x=2\)
TH3: \(2x=y\)
\(\left(1\right)\Leftrightarrow3x^3=3\)
\(\Leftrightarrow x=1\Rightarrow y=2\)
Vậy ...