Có: \(\left|x+y\right|\ge0;\left|2x-y\right|\ge0\)
Mà theo đề bài: \(\left|x+y\right|+\left|2x-y\right|=0\)
\(\Rightarrow\begin{cases}\left|x+y\right|=0\\\left|2x-y\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=0\\2x-y=0\end{cases}\)
=> (2x - y) + (x + y) = 0 + 0
=> 3x = 0
=> x = 0 : 3 = 0
=> y = 0 - 0 = 0
Vậy x = 0; y = 0
\(\left|x+y\right|+\left|2x-y\right|=0\)
\(\Leftrightarrow\begin{cases}x+y=0\\2x-y=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=-y\\-2y-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-y\\y=0\end{cases}\)\(\Leftrightarrow x=y=0\)