Tui nghĩ đề phải vậy nè:
\(\left(x-1\right)^3+\left(x+2\right)^3=\left(2x+1\right)^3\)
Đặt: \(\left\{{}\begin{matrix}x-1=a\\x+2=b\end{matrix}\right.\) Thì pt trên trở thành:
\(a^3+b^3-\left(a+b\right)^3=0\)
\(\Leftrightarrow a^3+b^3-a^3-b^3-3ab\left(a+b\right)=0\)
\(\Leftrightarrow ab\left(a+b\right)=0\)
Xét các trường hợp sau ta được:
\(\left[{}\begin{matrix}x-1=0\\x+2=0\\1x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy pt trên có \(n_0S=\left\{1;-2;-\frac{1}{2}\right\}\)