Lời giải:
Ta có:
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{998}-1\right)\left(\frac{1}{999}-1\right)=\frac{1-2}{2}.\frac{1-3}{3}.....\frac{1-998}{998}.\frac{1-999}{999}\)
\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-997}{998}.\frac{-998}{999}\)
\(=\frac{(-1)(-2)(-3)....(-998)}{2.3.4...999}=\frac{1.2.3....998}{2.3.4...999}=\frac{1}{999}\)