Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Phương Thảo

\(\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

rút gọnkhocroicho em với

Nguyễn Trọng Chiến
8 tháng 2 2021 lúc 10:13

ĐKXĐ \(a\ge0,b\ge0\)

\(\Rightarrow\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)-\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)+\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\right)\)

=\(\left(\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}\right):\left(\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\right)\)

=\(\left(\dfrac{2a\sqrt{b}+2\sqrt{ab}}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\right):\left(\dfrac{-2\sqrt{a}-2}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\right)\) 

\(\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{-2\left(\sqrt{a}+1\right)}\) = \(-\sqrt{ab}\)

Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 13:23

Ta có: \(\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

\(=\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}+\dfrac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}-1\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}-\dfrac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}+1\right)\)

\(=\left(\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}-1\right):\left(\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-\left(ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}+1\right)\)

\(=\left(\dfrac{2a\sqrt{b}+2\sqrt{ab}+ab-1}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}-1\right):\left(\dfrac{-2\sqrt{a}-1-ab}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}+1\right)\)

\(=\dfrac{2a\sqrt{b}+2\sqrt{ab}}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}:\dfrac{-2\sqrt{a}-2}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}\)

\(=\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}\cdot\dfrac{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}{-2\left(\sqrt{a}+1\right)}\)

\(=-\sqrt{ab}\)


Các câu hỏi tương tự
Trần Phương Thảo
Xem chi tiết
Hồ Quang Phước
Xem chi tiết
Jeon Jung Kook
Xem chi tiết
ngoc linh bui
Xem chi tiết
long bi
Xem chi tiết
Trần Thị Ngọc Diệp
Xem chi tiết
phamthiminhanh
Xem chi tiết
An Sở Hạ
Xem chi tiết
Giang Do
Xem chi tiết