Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jeon Jung Kook

Cho biểu thức P= \(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}-\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}}+b\right]\)

a) Rút gon P

b) Tính P khi a=16 và b=4

Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 22:06

a: \(P=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{a-b}+b\right]\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)}+b\right]\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)}{a-\sqrt{ab}+b}\cdot\left(\dfrac{\sqrt{a}}{a+\sqrt{ab}+b}+b\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{\sqrt{a}+ab+b\sqrt{ab}+b^2}{a+\sqrt{ab}+b}\)

b: Thay a=16 và b=4 vào P, ta được:

\(P=\dfrac{4+2}{16-4\cdot2+4}\cdot\dfrac{4+16\cdot4+4\cdot4\cdot2+16}{16+4\cdot2+4}\)

\(=\dfrac{6}{12}\cdot\dfrac{116}{28}=\dfrac{29}{14}\)


Các câu hỏi tương tự
Trần Phương Thảo
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
An Sở Hạ
Xem chi tiết
long bi
Xem chi tiết
Hồ Quang Phước
Xem chi tiết
Nguyễn Kiều Hải Ngân
Xem chi tiết
Hàn Mạc Tử
Xem chi tiết
Trần Thị Ngọc Diệp
Xem chi tiết
vi thanh tùng
Xem chi tiết