đk \(a< 1\)
\(=\left(\dfrac{\sqrt{1-a}}{\sqrt{1-a^2}}\right):\left(\dfrac{1+\sqrt{1-a^2}}{\sqrt{1-a^2}}\right)\\ =\dfrac{\sqrt{1-a}}{\sqrt{1-a^2}}.\dfrac{\sqrt{1-a^2}}{1+\sqrt{1-a^2}}\\ =\dfrac{\sqrt{1-a}}{1+\sqrt{1-a^2}}\)
đk \(a< 1\)
\(=\left(\dfrac{\sqrt{1-a}}{\sqrt{1-a^2}}\right):\left(\dfrac{1+\sqrt{1-a^2}}{\sqrt{1-a^2}}\right)\\ =\dfrac{\sqrt{1-a}}{\sqrt{1-a^2}}.\dfrac{\sqrt{1-a^2}}{1+\sqrt{1-a^2}}\\ =\dfrac{\sqrt{1-a}}{1+\sqrt{1-a^2}}\)
1. cho biểu thức
M=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, rút gọn M
b, Tìm giá trị của a để M>-\(\dfrac{1}{2}\)
Cho A=\(\dfrac{\sqrt{1-\sqrt{1-x^2}}.\left[\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right]}{2-\sqrt{1-x^2}}\)
a) Rút gọn A
b) Tìm x biết A\(\ge\) \(\dfrac{1}{2}\)
Rút gọn biểu thức:
\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left[\sqrt{a}-\dfrac{1}{\sqrt{a}}\right]\left[\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right]\)
rút gọn biểu thức A=\(\dfrac{\left(2-\sqrt{a}\right)-\left(\sqrt{a+3}\right)}{1+2\sqrt{a}}\) (với a>0) ; B=\(\dfrac{1}{1-\sqrt{2}+\sqrt{3}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\); C=\(\dfrac{1}{\sqrt{5-2}}+\dfrac{1}{\sqrt{5+\sqrt{2}}}\)
Cho Q=\(\left(\dfrac{x-1}{\sqrt{x}-1}-\dfrac{x\sqrt{x}-1}{x-1}\right):\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)^2\)
a;Rút gọn Q với x≥0;x≠1
b;Tìm x để Q<1
Cho biểu thức A= \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm các giá trị để \(\dfrac{P}{A}\left(x-1\right)=0\)
Rút gọn biểu thức:
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
Rút gọn biểu thức:
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
p=\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a. rút gọn p với a ≥0 và a≠1
b. tìm a để p =0
P=\(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a-1}}\right)\)
Rút gọn P
Tìm các gtri của a để P<0
Tìm các gtri của a để P=2