Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Phương Thảo

P=\(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a-1}}\right)\)

Rút gọn P

Tìm các gtri của a để P<0

Tìm các gtri của a để P=2

Thiên Thương Lãnh Chu
8 tháng 2 2021 lúc 10:18

a) DKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

P=\(\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\\ =\dfrac{\left(a-1\right)^2}{4a}.\left(\dfrac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

     = \(\dfrac{a-1}{4a}.\dfrac{-2.2\sqrt{a}}{1}\)

     = \(\dfrac{1-a}{\sqrt{a}}\)

b) P<0 với a ∈ DKXD

=> \(\dfrac{1-a}{\sqrt{a}}< 0\)

mà √a > 0 với ∀a ∈ DKXD

=> 1-a < 0

<=> a>1 ( thoả mãn DKXD)

Vậy để P<0 thì a>1.

c) Để P = 2 với a ∈ DKXD

=> \(\dfrac{1-a}{\sqrt{a}}=2\)

<=> 1-a = 2√a

<=> a + 2√a -1 = 0

<=> \(\left[{}\begin{matrix}\sqrt{a}=-1+\sqrt{2}\\\sqrt{a}=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\)

<=> a = \(\sqrt{\sqrt{2}-1}\)(thoả mãn DKXD)

Vậy để P =2 thì a = \(\sqrt{\sqrt{2}-1}\)

Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 13:06

Sửa đề: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{a}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)\cdot\left(-1\right)}{\sqrt{a}}\)

\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)

\(=\dfrac{1-a}{\sqrt{a}}\)

b) Để P<0 thì \(\dfrac{1-a}{\sqrt{a}}< 0\)

mà \(\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên 1-a<0

hay a>1

Kết hợp ĐKXĐ, ta được: a>1

Vậy: Để P<0 thì a>1

c) Để P=2 thì \(\dfrac{1-a}{\sqrt{a}}=2\)

\(\Leftrightarrow1-a=2\sqrt{a}\)

\(\Leftrightarrow2\sqrt{a}+a-1=0\)

\(\Leftrightarrow a+2\sqrt{a}+1-2=0\)

\(\Leftrightarrow\left(\sqrt{a}+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+1=\sqrt{2}\\\sqrt{a}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=\sqrt{2}-1\\\sqrt{a}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)

hay \(a=3-2\sqrt{2}\)(nhận)

Vậy: Để P=2 thì \(a=3-2\sqrt{2}\)


Các câu hỏi tương tự
Trần Phương Thảo
Xem chi tiết
hello hello
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
ngoc linh bui
Xem chi tiết
MoMo
Xem chi tiết
lu nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
vi thanh tùng
Xem chi tiết
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết