Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đăng Họa Vũ

p=\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

a. rút gọn p với a ≥0 và a≠1

b. tìm a để p =0

An Thy
15 tháng 7 2021 lúc 20:14

a) \(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}+1-\sqrt{a}\right)\)

\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)

\(=\left(a-1\right)^2=a^2-2a+1\)

b) \(P=0\Rightarrow\left(a-1\right)^2=0\Rightarrow a=1\)

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:43

a) Ta có: \(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\)

\(=\left(a-1\right)^2\)

b) Để P=0 thì a-1=0

hay a=1(loại)


Các câu hỏi tương tự
nguyen2005
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
ngoc linh bui
Xem chi tiết
vi thanh tùng
Xem chi tiết
nguyễn thị hiền nga
Xem chi tiết
hello hello
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Trần Phương Thảo
Xem chi tiết