Lấy VT - VT , VP - VP có :
x + 2y -x + y = a + 2 - 4a +1
\(\Leftrightarrow3y=-3a+3\)
\(\Leftrightarrow y=1-a\)
Thay y = 1 - a vào PT thứ 2 có :
x - 1 + a = 4a - 1
\(\Leftrightarrow x=4a-1+1-a=3a\)
Lấy VT - VT , VP - VP có :
x + 2y -x + y = a + 2 - 4a +1
\(\Leftrightarrow3y=-3a+3\)
\(\Leftrightarrow y=1-a\)
Thay y = 1 - a vào PT thứ 2 có :
x - 1 + a = 4a - 1
\(\Leftrightarrow x=4a-1+1-a=3a\)
1)\(\left\{{}\begin{matrix}2x+\dfrac{1}{y}=\dfrac{3}{x}\\2y+\dfrac{1}{x}=\dfrac{3}{y}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}x^3=3x+8y\\y^3=3y+8x\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^2+y^2+x-2y=2\\x^2+y^2+2x+2y=11\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^3-y=1\\3x^2-3xy+y^2=1\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3-y^3=9\\\left(x-y\right)\left(x^2+y^2\right)=15\end{matrix}\right.\)
Giải hệ phương trình
1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)
4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)
6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)
7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)
8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)
9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)
10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)
12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)
13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)
14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)
15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)
16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)
17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)
18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ
1, Giải các hệ phương trình sau
a, \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=26\\x+y=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-y=0\\xy+3y-5x=7\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\left(x-1\right)^2=1-y\\\left(x^2-y\right)^2=2xy\left(1+x\right)\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}x^2y+y^2x=2\\x^3+y^3+6=8x^2y^2\end{matrix}\right.\)
Giải hpt : a) \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2+6xy-\frac{1}{\left(x-y\right)^2}+\frac{9}{8}=0\\2y-\frac{1}{x-y}+\frac{5}{4}=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{x}{x^2-y}+\frac{5y}{x+y^2}=4\\5x+y+\frac{x^2-5y^2}{xy}=5\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}3xy+y+1=21x\\9x^2y^2+3xy+1=117x^2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=1\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}x^2-3x+2y=2\\2x^2+y-x=3\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x^2+y^2+xy-3y=4\\2x-3y+xy=3\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}x^2-2y^2-xy-2x+7y-3=0\\x^2+y^2-x+y=0\end{matrix}\right.\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}2x^3=y+1\\2y^3=x+1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=7\\x^2-\frac{1}{y^2}=3\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+y^2=10\\x+y=4\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}xy+x+y=19\\x^2y+xy^2=84\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2+xy+y^2=4\\x+xy+y=2\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}xy+y^2=1+y\\x^2+2y^2+2xy=4+x\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2y^2-xy+2y-x=0\\x^2-y^2+6xy+12=0\end{matrix}\right.\)
Giải hệ phương trình:
\(a,\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}+y\sqrt{x-1}=2\left(x-y\right)\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{matrix}\right.\)