a,Tìm m để hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)có nghiệm duy nhất (x;y) thỏa mã x+y= -3.
b, Tìm m để hệ phương trình \(\left\{{}\begin{matrix}mx-y=1\\x+my=m+6\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn 3x -y =1.
c, Tìm các giá trị của m để hệ phương trình \(\left\{{}\begin{matrix}mx-2y=m\\-2x+y=m+1\end{matrix}\right.\)có nghiệm duy nhất (x;y) sao cho x-y=1
d, Tìm m để hệ phương trình \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn \(x^2-2y^2=1\)
Tìm m để hệ phương trình \(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\) có nghiệm duy nhất (x;y) thỏa mãn x-2y=2m
Cho hệ pt \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
a, giải hệ pt với m = 2
b, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) trong đó x, y trái dấu
c, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) thỏa mãn x = / y /
Tìm cá giá trị cua m để hệ pt \(\left\{{}\begin{matrix}mx-2y=m\\-2x+y=m+1\end{matrix}\right.\)có nghiệm duy nhất (x;y) sao cho x-y=1
1. Tìm a để hệ có nghiệm duy nhất :\(\left\{{}\begin{matrix}xy+x+y=a+1\\x^2y+y^2x=a\end{matrix}\right.\)
2. Giải hệ : \(\left\{{}\begin{matrix}x^2y^2-xy-2=0\\x^2+y^2=x^2y^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+2y=2\\mx-y=m\end{matrix}\right.\)
tìm m để hệ phương trình có nghiệm duy nhất (x,y) sao cho x>1 y>0
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=m^2+3\\x-y=-4\end{matrix}\right.\)(m là tham số). CMR: Với mọi \(m\ne-1\), hệ phương trình có nghiệm duy nhất (x;y). Khi đó tìm giá trị nhỏ nhất của biểu thức: \(Q=x^2-2y+10\)
cho hệ pt: \(\left\{{}\begin{matrix}x+2y=5\\mx+y=4\end{matrix}\right.\)
Tìm m ∈ Z để hpt có nghiệm duy nhất mà x và y là số nguyên
Cho hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\left(I\right)\) (m là tham số) .
a) Giải hệ phương trình (I) khi m=1.
b) Tìm m để hệ (I) có nghiệm duy nhất (x,y) thỏa mãn x+y=-3.