Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Bảo Quang

\(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{y+1}=\sqrt{4-x+5y}\\x^2+y+2=\sqrt{5\left(2x-y+1\right)}+\sqrt{3x+2}\end{matrix}\right.\)

Ai giúp em bài này vs ạ :< Ở pt trên em làm ra được x = y và x = 4y+3 rồi nhưng thay vào pt dưới vẫn không ra ạ :< Em cảm ơn ạ

Nguyễn Việt Lâm
6 tháng 2 2021 lúc 20:54

Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:

TH1: \(x=y\)

\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)

\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)

\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)

TH2: \(x=4y+3\)

Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)


Các câu hỏi tương tự
Đức Mai Văn
Xem chi tiết
Phuong Phuong
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Lalisa Manobal
Xem chi tiết
DRACULA
Xem chi tiết
Đức Mai Văn
Xem chi tiết
DRACULA
Xem chi tiết