Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hoàng thị ngọc mai

\(\left\{{}\begin{matrix}\left(a+1\right)x-y=a-1\\x+\left(a-1\right)y=2\end{matrix}\right.\)

Tìm a để hệ có nghiệm duy nhất (x;y) thỏa mãn x+y nhỏ nhất

Hoa Trương Lê Quỳnh
25 tháng 5 2019 lúc 2:55

Hệ có nghiệm duy nhất \(\Leftrightarrow\left(a+1\right)\left(a-1\right)\ne-1\Leftrightarrow a^2\ne0\) hay a ≠​ 0

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}a\left(x-y\right)=a-3\\x+\left(a-1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+y\\\left(\frac{\left(a-3\right)}{a}+y\right)+\left(a-1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+y\\\frac{\left(a-3\right)}{a}+ay=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+\frac{a+3}{a^2}\\y=\frac{a+3}{a^2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{a^2-2a+3}{a^2}\\y=\frac{a+3}{a^2}\end{matrix}\right.\)

=> x+y=\(\frac{a^2-a+6}{a^2}=1-\frac{1}{a}+6.\frac{1}{a^2}\)
Đặt \(\frac{1}{a}=t\)
=> 6t2-t+1=\(6\left(t-\frac{1}{12}\right)^2+\frac{23}{24}\ge\frac{23}{24}\)
Dấu bằng xảy ra khi và chỉ khi \(t-\frac{1}{12}=0\Leftrightarrow t=\frac{1}{12}\Leftrightarrow a=12\)


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Aurora
Xem chi tiết
hakito
Xem chi tiết
NGUYỄN MINH TÀI
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
Hoàng Ngân
Xem chi tiết
nguyen ngoc son
Xem chi tiết